Conjugate Gradient Iteration

Obervation 1. AX=b < min% X" Ax—X"b
xeR"

o v

$(X)

Observation 2. min ¢(X) = min HX — X*H
xeScRN xeScRN A
Ideas:
1. Suppose we have found a search-direction P, at X«
. k
we want to Min p(x" +abk,)

T
Pk +1 rk

d  «
= —o(X" +aP, =0 =>qa  =—"""—

2. Suppose X' €{f,, Ar, A’r, .. AR+ x
Kk

For any J ek,
%¢(xk+t3)zv¢(xk+tJ)T-J:O att=0

S Vh(x) - J=(b-Ax) -J=-1 =0

Since I, | <k, allin K,, we haver,-r, =0, | <k



2. What search direction Pk+1 should be looked for?

rk+l = b o AXk+1
From ¢ —b Ax, = A%, =X )= T,

= Consider X, ., = X, + P,

where X, e K, and x.,,, B, € K,,,, we have
(*) ak (‘JAPk+1) = ‘J(rk — rk+1) = 0 fOr a" J i~ Kk

= One should look for B, in the subspace that is
A-orthogonal to K, (i.e B’ ,AJ =0 forallJ e K,)

4. Recall that T, € K ;.

To build an iterative updating algorithm for Pk +1, 1t 18

natural to consider (assuming we can find Pk that is

A-orthogonal to K )

r-k

/ Pk+1
kK — — y i K
(**) B =% = bab o T‘ k
A-orthogonal

ﬂk+l I:)k
——

some scalar

To satisfy (*), we have



PkT+1ArI,0slsk—1 =0 = (r—B.F ) Ar, =0

;\r—/
EKk

Forl < k-1 = AreK,, =r Ar =0
Moreover, by assumption, BFA 1, =0 (=
[,

eKy

PT A =0, 0<l<k-1

So we only needs to determine f, ., such that
rkT Al = B PkT Al =0
= B., =" Ar_ /P Ar_, provided P Ar_, #0

Since r, =b—-Ax, =b-A(X,_, +oP)=r_, —aAPR,

r - ro= In_, HZ— aP!Ar_ =0
#0

2
Ir. |

= R'Ar,_, #0and B/ Ar_, = otherwise condradict

To tie the end, we only need to show




3P, thatis A-orthogonal to K =1

-

R=5
provided < X, =X, + ¢, - P,
| L=b-Ax
. ' Ar
Consider P, =1, - (———>-) PR,
R AR
=P,
;
one has P Ar, = (1 — rlTi‘rro 1y AT,

1 0

=1’ Ar,—r' Ar, =0

Hence result.

5. Let’s re-examine the quantities %, and S,

PLE G +BuRR Y 6l
— = = r -r=0forl<k
akH Pk-:lAPkH Pk-ErlAPkH Pk-ErlAPkH ( < )
IB = I‘kT Ark—l (253) rkT APk _:Bk rkT APk—l (2);(3) rkT Apkak _ ”rk ”2
k+1 — - - -
TORAn L [
ay

(1) by applying (**) recursively and r -r. =0 for 1 <k
2)r_, =B -BPR_,, AP, € K,and I, is orthogonal to K,
(3)yrecall r, =b—-Ax, =b-AX_,+oR)=r1_, —, AR,

Ir, HZ =a, 1, AP,



CG algorithm:

cg(x, b, A, ¢, k__)

1. r=b-Ax, ,00:||l’ 2, k=1
2. do while \/p,, <&|b|| and k < k.

(Ps =|r| relative residual less than &)
(@) if k=1, thenP=r (set P =r,)

else f=L%L and P=r + P

,0k_2 P Ta BPra

(b) w= Ap

_ /Ok/
¢ P'w

c) X = X +«aP (update x
()(new) (old) @ (p )

(d)r= (b-Ax,,) (updater)
= b-A(X,y +aP)
=b-Axy - AP =1 - aw

%/_/
w
Told

© p=|r[
(f)k = k+1




CG — convergence analysis:

Let X~ be the solution of AX =b and

X, be the minimum of ¢(X) over X, + K,

k-1
consider we X, +K, = w=> ¢ AL +Xx,
i=0

andr, = b-Ax, = A(X -X,)

k-1
X ==X =% —> ;A" (X =X
i=0

k-1 _
let P(A)=1-) c,Al", we have X — @ =P(A)(X —X,)
j=0

Since HX* — XkHA < HX* —a)HA for all w € X, + K, one has

X =x], = min [P -x),
with P(0)=1

Now suppose A is symmetric, positive definite and

0 A

n

A 0
diagonalizable. Y "AU = A= { K

P(A)=UTP(AU

IP(A)], = HA% P(A)X A2x

< [P,

5 A sym.

<[P,
:>ka—x*HAst0—x*H min max |P(2)|

A PeR, zeo(A)
[ ]
A < max |P(2)

PO=1 =2/}
: £
o<1,
0 A

, forany P € B, and P(0) =1



Theorem 2. Let A be symmetric and positive definite, then CG

find the solution of AX=b within N iterations.

Ans:let P(z) = ﬁM e P,

A
clearly, P(0)=1and max Pn(z)=0
Sy EoN
:>HXN_X*H < max Py (2)=0 =X, =X
],

Theorem 3. Let A be symmetric and positive definite. Assume A
has exactly k<N distinct e-values of A. Then CG converges in at

most k steps.

Observations:

Lemma: 1P~ A%l: < JK,(A)- I, HXK_X*HA (Assume 4, > 4, > > 1)
[b], [oll, % —x],

[nl, _Io-Ax, JACC-x)], VA o< -x)],
ol = b= A, " A )], Vi Jod w0,

=),

< «/COI’Id(A) m

Here K, (A) = Cond (A) under the 2-norm.



J.W. Daniel The conjugate gradient method for linear and
nonlinear operate equations SIAM J. Numer. Anal. 1983

p.296-314.

The sharpest estimations:

if K, (A) >>1, the convergence may be very slow.
On the other hand, if K, (A) ~ 1, then the convergence is very fast.

How many iterations are needed for the relative error to be less

than a given tolerance €?

Exercise:

The number of iteration needed for the CG algorithm is

about o[ln Gj Kzz(A)J

To reduce the conditional number of A, we need

preconditioning!



Solve Ax=b =M'Ax=M"b (M is called a precinditioner of A)
= 5
A

Candidates of preconditioner : (A=M-N)

1. Jacobi iteration: M=diag(A)

2. Gauss-Seidel iteration: M=lower triangular of A

3. incomplete Cholesky factorization A=LL +E (E: a small
perturbation)

4. multigrid iteration:

Preconditioned CG (PCG)

ALGORITHM : 9« Preconditioned Conjugate Gradient
Computery := b — Axy, zg = M ~1ry, and p, := 2,

Forj = 0,1,..., until convergence Do:
o = (1, 25) /(Apj, Pj)

Tjy1 = T; + ;P

. — N 1p.

Zj41 = M i1

(o, «— v, -, / o,
Bj = (Tjt1s Zj41) /(745 25)
Pj+1 i= Zj+1+ Bjp;
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5. Tyl i=Tj — ajAp;
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9. EndDo



