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2. What search direction 1kP +  should be looked for? 
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To satisfy (*), we have 
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To tie the end, we only need to show  
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CG algorithm: 
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CG – convergence analysis: 
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Now suppose A is symmetric, positive definite and 

diagonalizable. 
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Theorem 2. Let A be symmetric and positive definite, then CG 

find the solution of AX=b within N iterations. 
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Theorem 3. Let A be symmetric and positive definite. Assume A 

has exactly k≤N distinct e-values of A. Then CG converges in at 

most k steps. 

 

Observations: 
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The sharpest estimations: 
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     if ( ) 1,  the convergence may be very slow. 
    On the other hand, if ( ) ~ 1,  then the convergence is very fast.
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How many iterations are needed for the relative error to be less 

than a given tolerance ε? 

 

Exercise:  
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To reduce the conditional number of A, we need 

preconditioning! 
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Candidates of preconditioner : (A=M-N) 

1. Jacobi iteration: M=diag(A) 

2. Gauss-Seidel iteration: M=lower triangular of A 

3. incomplete Cholesky factorization TA LL E= + (E: a small 

perturbation) 

4. multigrid iteration: 

 

 


